

3D scanning in SEM

Dr. Grigore Moldovan

point electronic GmbH Halle, Germany

Why 3D scan in SEM?

Stereoscopy, topography, photogrammetry and related 3D shape techniques have a long history in SEM.¹ Main motivations are

- Modelling
 - Analysis: 3D distances, volume, texture, morphology...
 - Animation: nature/science documentaries, game characters
- Visualisation
 - 3D screen/headset: present or publish complex shape information
 - 3D print: natural interaction with microscopic shapes
- Resolution
 - Light-based 3D scanning: resolution limited to sub-millimeter range
 - TEM tomography: thickness limited sub-micron range

¹ A Boyde and H F Ross, The Photogrammetric Record 8 (1975) p. 408

SEM stereoscopy: technique

Provides illusion of depth from pairs of SE images at slightly different tilt – only illusion

- 1. Two images are taken at slightly different tilt (stage or detectors).
- 2. Left and right images are delivered to left and right eye, respectively.
- 3. Illusion of depth is achieved naturally perception.

SEM stereoscopy: example

Nanoflight: technique

Provides the impression of a slow-motion fight around nano-scale objects – only illusion

- 1. Multiple on- and off-axis BSE images are acquired simultaneously
- 2. Images are colour mixed each detector is assigned a single colour
- 3. Sample is rotated/translated on a calculated trajectory
- 4. Illusion of flight is achieved naturally perception

Nanoflight: nanoflight[®] movie, S. Diller

SEM photogrammetry: technique

Provides 3D models from SE images at different tilt and rotation – limited by edge effects, charging, long working distance

- 1. Sample is mounted on stub, titled, rotated and imaged
- 2. Acquisition geometry is determined from point matching in SE images
- 3. Fine points/mesh are extracted/calculated from SE images
- 4. Texture is extracted from SE signal

SEM photogrammetry: example

Lionel C Gontard et al., Ultramicroscopy 169 (2016) p. 80

-1.80

0.06

z

4.6

SEM topography: technique

Provides measurements of depth from BSE images at different view angles – only 2½D

- 1. Acquisition geometry is calibrated (mag., working distance, detector)
- 2. Simultaneous images are acquired from 4-quadrant BSE detector
- 3. Surface normal at each scan point is calculated by image photometry
- 4. Height is reconstructed by assembling all surface normals

SEM topography: example

Surface topography of W nanoprobe tip

point electronic GmbH © 2017

3D scanning: SEM photogrammetry, but no SE

'3D scanning' term is used to distinguish from SE-based techniques

- 1. Sample is mounted on a nanotip, titled, rotated and imaged
- 2. Acquisition geometry is determined from point matching in BSE images
- 3. Fine points/mesh are extracted/calculated from the BSE images
- 4. Texture is extracted from BSE signal

EBAC signal: resolution

Electron Beam Absorbed Current (EBAC) is a common signal for failure analysis of CMOS devices. Example below is from a W nanoprobing tip

- Good resolution is maintained even at very long working distance
- Contrast is independent from working distance
- Signal is quantitative (nA, pA, fA)

EBAC signal: edge effects

EBAC signal has a uniform apparent illumination, as there is no added contribution from detector geometry

- There is no apparent side illumination
- Edge effects appear to be similar to those of IL signal
- Background is entirely removed from images

3D scanning: SEM photogrammetry, but no SE

'3D scanning' term is used to distinguish from SE-based photogrammetry

- 1. Sample is mounted on a nanotip, titled, rotated and imaged
- 2. Acquisition geometry is determined from point matching in EBAC images
- 3. Fine points/mesh are extracted/calculated from the raw EBAC images
- 4. Texture is extracted from BSE signal

point electronic GmbH © 2017

3D scanning: experimental

Uncoated Portland cement powder is used here as a test case, as it has particles of complex 3D shapes on a wide range of dimensions, and it is prone to charging.

- SEM
 - upgraded DSM982 Zeiss FEG-SEM
 - sample on nanoprobe needle
 - 20kV accelerating voltage
 - 20mm working distance
- BSE detector
 - 4-quadrant Si sensor
 - SUM signal (compo. mode)
- Quantitative EBAC electronics
 - 10⁷ V/A in-situ preamplifier gain
 - 0.1...100 ex-situ amplifier

- Stage controller
 - Automated XY placements
 - Automated 360° R with 15° steps
 - Manual 80° tilt
- Image acquisition DISS5
 - min. 2x simultaneous signals
 - min. 1,024 x 1,024 pixels
 - 12-bit digitization, 16-bit TIF files
- Agisoft PhotoScan Standard
 - Manual input of pixel size and focus
 - Complete automated reconstruction

Raw images: SE (317.5µm FOV, 310nm/pixel)

point electronic

Q

Raw images: EBAC (317.5µm FOV, 310nm/pixel)

¢

point electronic

Raw images: BSE (317.5µm FOV, 310nm/pixel)

point electronic

e

Acquisition geometry: automatic

point electronic GmbH © 2017

Points cloud: EBAC

Points cloud: BSE

Wireframe: EBAC

Wireframe: BSE

point electronic GmbH © 2017

Texture: BSE

Texture: EBAC

EBAC data

Conclusions

A simple and robust approach to 3D scanning in SEM is detailed, taking advantage of established light-based photogrammetric reconstruction

- SEM signals
 - SE is less suitable for 3D work
 - BSE and EBAC signals are more resilient to charging and edge effects
- 3D model can be reconstructed automatically
 - Very high density points cloud and wireframe
 - BSE texture adds density/atomic number contrast
 - EBAC mesh brings higher resolution than BSE
- SEM distortions/aberrations can be determined with photogrammetry
 - Centre of projection
 - Radial distortions
 - Tangential distortions

© point electronic

Acknowledgements

- Wolfgang Joachimi, Uwe Grauel (point electronic) for design of EBAC electronics
- Matthias Hemmleb (m₂c) for discussions on photogrammetry

point electronic GmbH | Erich-Neuß-Weg 15 | 06120 Halle (Saale) | Germany Tel. +49 345 1201190 | Fax. +49 345 1201223 | info@pointelectronic.de | www.pointelectronic.de

> Custom Engineering engineering@pointelectronic.de +49 345 47225619

Support & Training support@pointelectronic.de +49 345 1201190

Sales & Service sales@pointelectronic.de +49 345 1201190