

Live quantitative BSE acquisition with standard-less calibration

Dr. G. Moldovan point electronic GmbH, Halle (Saale), Germany

M&M 2018, Baltimore

Motivation

Enable automatic quantitative BSE (qBSE) acquisition

- Pixels have physical values, independent of acquisition settings
- Data can be compared between samples, microscopes, processing, etc.
- Material properties can then be extracted, e.g. density, topography

Software and hardware must be designed for, and calibrated for qBSE

Offline workflow

- SEM, BSE and sample configuration is fixed
- Calibration samples provide ADC to density conversion
- Density of target material is interpolated

• Online workflow

- Every component (analogue or digital) is factory calibrated
- Calculations and algorithms are applied live on the microscope
- Quantitative data is easily extracted/exported

Data format

Data must include additional intensity calibration parameters

35	<pre><diss:acqparams rdf:parsetype="Resource"></diss:acqparams></pre>
36	<pre><diacq:classstr>Slow</diacq:classstr></pre>
37	<diacq:classid>256</diacq:classid>
38	<diacq:xoffset>248</diacq:xoffset>
39	<diacq:yoffset>1074</diacq:yoffset>
40	<diacq:xpre>59</diacq:xpre>
41	<diacq:xpost>2</diacq:xpost>
42	<diacq:xrep>1084</diacq:xrep>
43	<diacq:yrep>1023</diacq:yrep>
44	<diacq:xstep>14</diacq:xstep>
45	<diacq:ystep>14</diacq:ystep>
46	<diacq:xbackrep>105</diacq:xbackrep>
47	<diacq:xbackstep>-143</diacq:xbackstep>
48	<diacq:channelselect>5</diacq:channelselect>
49	<diacq:channelselectex>5</diacq:channelselectex>
50	<diacq:samplerepeat>31</diacq:samplerepeat>
51	<diacq:linerepeat>0</diacq:linerepeat>
52	<diacq:subframerepeat>0</diacq:subframerepeat>
53	<diacq:framerepeat>255</diacq:framerepeat>
54	<diacq:extscandelay>1000</diacq:extscandelay>
55	<diacq:extblankdelay>1000</diacq:extblankdelay>
56	<diacq:linestartdelay>30</diacq:linestartdelay>
57	<diacq:adcclock>6</diacq:adcclock>

- Raw image data is standard 16-bit multi-page TIFF
- Full calibration information is standard XMP metadata (in TIFF file)
- Scan and intensity calibration is assembled by the viewing software

Analogue to digital conversion

Calibrates digital units (12-bit) to input signal (V)

- Calibration information is stored in firmware factory calibration
- All signal channels are treated the same 4Q BSE systems
- Data from different acquisition systems can be compared directly

Calibrates the user-controlled brightness and contrast

- Calibration information is stored in the firmware factory calibration
- Each signal channel is treated independently
- Current measurement is independent from brightness and contrast

Corrects for offset and gain variations between BSE segments

- Offsets relate to leakage currents, and are corrected with an output offset
- Gain variations between segments are corrected with a normalisation gain
- Dark and bright corrections are well defined automatic routines

Calibrates the current gain as a function of acceleration voltage

- Current is amplified due to generation of electron-hole pairs
- Amplification is stronger for higher energy electrons
- Allows for comparison of images at different acceleration voltages

Calibrates the collection efficiency as a function of working distance

- Electrons are lost outside the detector, when working distance is long
- Electrons are lost in the inner hole, when working distance is small
- Loss of electrons is measured and can be accounted for.

Surface orientation

Multiple BSE signals provide surface orientation information

- Position and orientation of segments is known geometry is well controlled
- Signals are acquired at the same time differences in signal give additional information
- Signals are quantified comparison and algorithms are possible

Test object

High resolution structure manufactured with FIB

- Deposited dome-shaped structure for testing calculation of height
- Milled donut-shaped structures for automatic identification

Height and composition

Shape-from-shadow reconstruction algorithm

Composition

- Height is calculated in nm units resolution depends on kV
- Composition is calculated in current units total backscattered electrons •

Height

3D view of height and composition

Composition is rendered as texture on the 3D model of the surface

Acknowledgements

• point electronic GmbH

Marcus Joachimi: electronics design Michael Zabel: software development Matthias Hemmleb: algorithm development – SEM topography

PNDetector GmbH
Maximilian Schmid: detector and mechanics design
Andreas Liebel: detector design

point electronic GmbH | Erich-Neuß-Weg 15 | 06120 Halle (Saale) | Germany Tel. +49 345 1201190 | Fax. +49 345 1201223 | info@pointelectronic.de | www.pointelectronic.de

> Custom Engineering engineering@pointelectronic.de +49 345 47225619

Support & Training support@pointelectronic.de +49 345 1201190

Sales & Service sales@pointelectronic.de +49 345 1201190