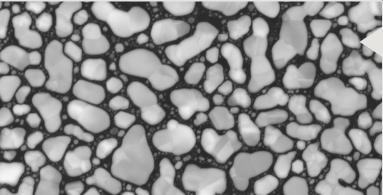
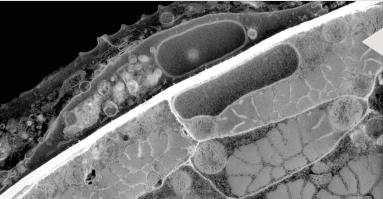

BSE acquisition


Quantitative BackScattered Electron (BSE) acquisition system

Reveal Z-contrast invisible to SE signals

- Reveal soil structure and identify mineral constituents
- Determine variations of content in biological structures
- Image shape, size and distribution of nanoparticles




Explore Electron Channelling Contrast Images/Orientation Contrast

- Identify dislocations, stacking faults and grain boundaries in the SEM
- Image crystallographic orientation of grains
- Map distortions in crystal lattice

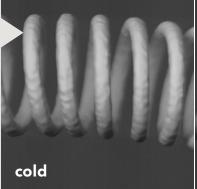
Measure density with highest resolution

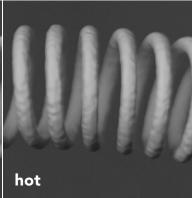
- Image distribution, shape of grains in steels and alloys
- Measure variations in mineral concentrations in bone
- Identify phases and measure area fractions in metal matrix composites

Speed up your BSE workflow

- Navigate large samples with the high speed BSE
- Align the SEM without switching to SE imaging
- Minimise specimen charging with high-speed line and frame averaging

Discover the benefits of high-performance BSE


Acquire colour images and animations


- Colourise SEM images with BSE signals
- Produce high quality images for publications
- Acquire time or rotation based series for videos


BSE acquisition

Record dynamics of in-situ heating

- Observe crystallisation, recovery and sintering
- Record growth dynamics with in-situ ESEM
- Quantify creep and fracture at high temperatures



Reconstruct 3D information from BSE data

- Measure surface heights with live SEM topography
- Discover volume of biological speciments with 3D SEM
- Obtain microscopic 3D models with 3D scanning

Quantitative BSE for any SEM or FIB-SEM

Complete system for quantitative BSE acquisition

- BSE detector
- DISS6 imaging
- MICS-4 amplifier
- BSE reference samples

BSE detector

- Segmented 4Q sensor with detector grade Si diode
- In-situ preamplifiers for low-noise and high-speed
- Port-mounted and motorised insertion/retraction
- Integrated touch alarm
- Full alignment under vacuum conditions

DISS6 imaging

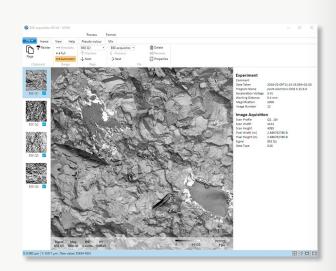
- Signal amplifier, scan generator and image acquisition
- Simultaneous acquisition of all signals
- Advanced offset and gain normalization
- Very large image resolution

BSE acquisition

MICS-4 amplifier

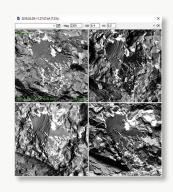
- Integrated into BSE detector, DISS6 or stand-alone
- Calibrated amplification for quantitative acquisition
- Up to 16x multi-channel signal amplifier
- Independent brightness and contrast for each signal
- Global brightness and contrast for 4x signal groups

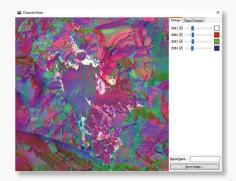
Full quantitative data workflow



DISS6 app - detector control and image acquisition

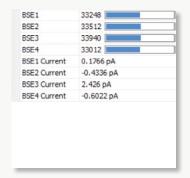
- BSE detector control
- BSE and AUX image acqusition
- Live measurement of BSE intensities
- Standard file formats

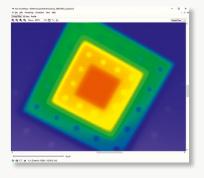

DIPS6 app - quantitative image processing


- Automatic quantification from metadata
- Advanced pseudo-colours with gradients
- Detailed view of metadata from DISS6
- Export to CSV data, or PNG images

Simultaneous 4Q BSE

- Signals are acquired from the same sample location
- Data is kept together in multi-page TIFF files
- Calibration is stored in standard XMP metadata


BSE acquisition


Software mixing for grayscale/colour representation
Advanced "TOPO" and "COPMO" mixing modes
Optional hardware mixed BSE for convenience

Live colour mixing

Live quantitative acquisition

- Live inspection of measured BSE values
- Enabled by calibrated amplification and imaging
- Add own quantification formulas, including working distance, acceleration voltage, or beam current

3D visualisation and measurements (optional)

- 3D views of height data from with SEM topography
- Additional texture from SE, EDS, EBSD or CL images
- Line and point data extraction for 3D measurements

BSE detector

Sensor	4Q segmented Si diode on ceramic board
	6 mm inner diameter
	20 mm outer diameter
	130 keV electron energy range
Preamplifier	mounted in-situ
	5 MHz bandwidth
	10⁵ or 10⁴ V/A gain
Mechanics	port mounted, with vacuum bellows
	motorised insertion/retraction motion
	manual lateral and height alignment
	integrated touch alarm

DISS6 imaging

- 1000 mm.gg	
Inputs	4× calibrated BSE analog inputs
	8× calibrated AUX analog inputs (SE, CL, AUX)
	12× digital inputs (D1D12)
	3× trigger inputs (Pixel, Line and Frame)
	Scan pause/resume input
Outputs	4x BSE1BSE4 signals
	2x BSE mixed signals (SUM and MIX)
	2× calibrated analogue scan outputs (X, Y)
	2× external control outputs (Blank and Scan)
	4× clock outputs (Pixel, Line, Frame and Blank)
Scanning	16-bit ±3.5±12V analogue X, Y scans
	Gnd., 5V, 15V external bank/scan
	TTL pause/resume
	TTL clock and synchronisation
	0.5 GPixels maximum frame size (software limit)
	10 ns10 ms pixel dwell time (selection dependent)
	132,000× pixel average (oversampling)
Digitization	12-bit for analogue signals
	16-bit for TTL D1D12
	32-bit for TTL D1D6 (optional)
MICS-4 amplifier	-11 V input offset BSE1BSE4
	1× 1,800× gain BSE1BSE4
	-0.50.5 V output offsets BSE1BSE4
	3.4 MHz34 Hz low-pass filter
	Automated 4Q global brightness and contrast
	Automated input offsets (dark correction)
	Automated gain normalisation (bright correction)

PC/Laptop, Display (optional)

PC/Laptop	Intel Core i3 minimum
	2 × USB 2.0 minimum
Displays	1,280 × 1,024 resolution minimum
	1 × display recommended
Operating systems	Windows 10 Windows XP
	Network connection recommended

DISS6 app

Detector control	automatic insertion/retraction
	contrast and brightness
	input offset and gain normalisation corrections
	hardware 'topographic' and 'compositional' mix
Quantification	formulas based quantification for pixel values
	automatic use of brightness and contrast values
	optional use of SEM parameters (HV, WD, etc)
	live inspection of calculated pixel values
Image scanning	workflow with predefined scan profiles
	live colour mixing tool
	live linescan and histogram tool
	advanced line and point scans
	automatic image range during acquisition
File formats	raw 16-bit multi-page TIF with XMP tags
	compressed 8-bit multi-page TIF with XMP tags
	compressed JPEG with XMP tags
Operating system	Windows 117

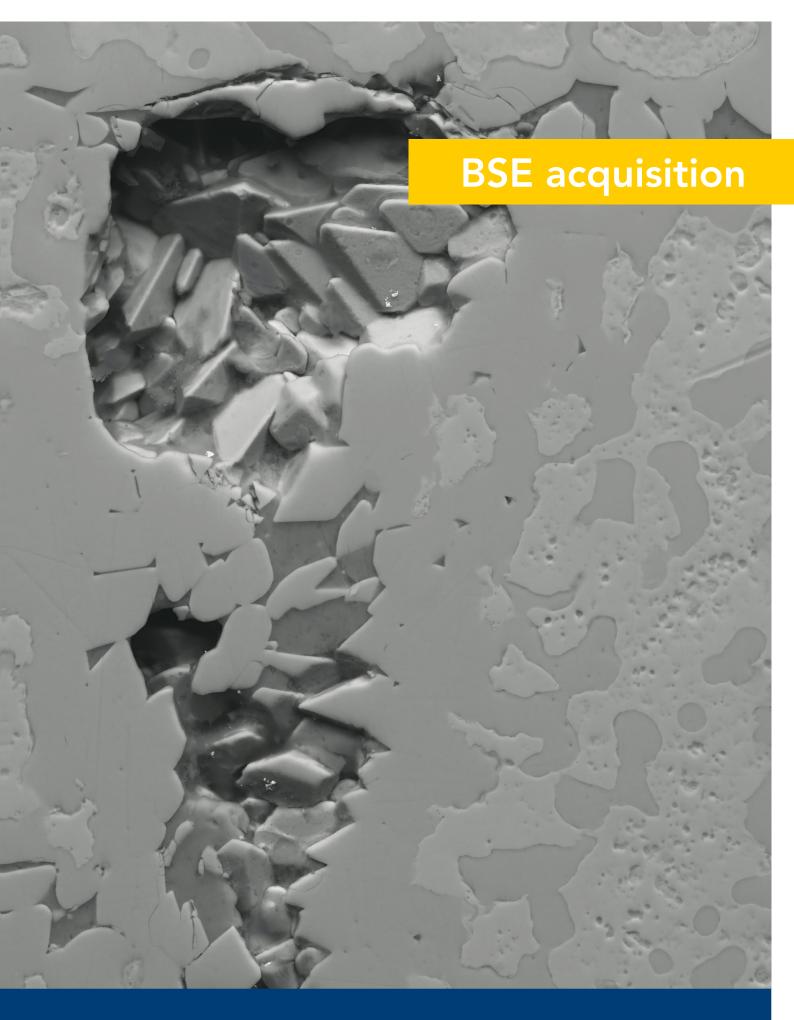
DIPS6 app

File inputs	raw 16-bit multi-page TIF with XMP tags
	compressed 8-bit multi-page TIF with XMP tags
	compressed JPEG with XMP tags
File outputs	PNG for colour export
	CSV for quantified data export
	compressed JPEG with XMP tags
Quantification	formulas based quantification for pixel values
	formulas from metadata or XML imports
Pseudo-colour	GGR gradient colours
	colour image mix view
Operating system	Windows 117

Software packages

Drivers	PEUSB drivers
	DISS6Control library
Server	EM Gateway
Apps	DISS 6
	DIPS 6

Parts and Cables


BSE detector	Standard	1x
DISS6 imaging	Standard	1x
MICS amplifier (if not embedded in DISS6/det.)	Optional	1x
BSE reference sample	Optional	1x
BSE detector cable	Standard	1x
SEM cable	Standard	1x
USB cable	Standard	2x
USB drive with software	Standard	1x
PC, keyboard, mouse	Optional	1x
Displays	Optional	1x

Weight and Dimensions

BSE detector	15 x 20 x 40cm
	8.5 kg
DISS6 imaging	23.5 x 8.8 x 29.5 cm
	4 kg

Site requirements

Power	1x mains 110/220 VAC single phase 50-60 Hz
	on the same earth as the microscope
Microscope	1x external scan interface
	1x earth connection
	1x detector port
Space	DISS6 imaging unit can be placed on the SEM bench/table
	PC (optional) should be placed in the SEM room

SALES & SERVICE

sales@pointelectronic.de +49 345 1201190

SUPPORT & TRAINING

support@pointelectronic.de +49 345 1201190

CUSTOM ENGINEERING

engineering@pointelectronic.de +49 345 47225619

point electronic GmbH | Erich-Neuß-Weg 15 | 06120 Halle (Saale) | Germany Tel.: +49 345 1201190 | Fax: +49 345 1201223 | info@pointelectronic.de | www.pointelectronic.de

