

TEM Scan Controller

High performance external scan controller for TEM, with Software Development toolKit for independent development

Our best ever Scan Controller

Designed to enhance your microscope capabilities and maximize efficiency, our external TEM Scan Controller offers highest performance in image scanning and processing, as well as flexible integration into your TEM and your workflows.

Scan signals

Detector signals

Analog inputs for standard BF

and HAADF detectors

Analog outputs for all major TEM external scan interfaces

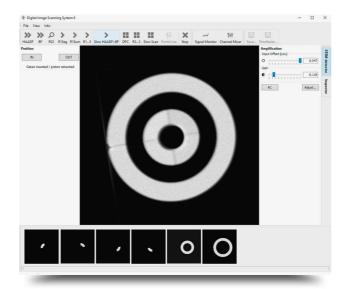
Adjustable TTL trigger inputs and outputs for 4D STEM cameras

Control interfaces

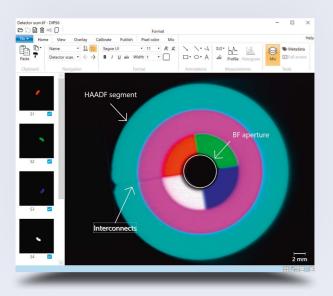
Standard control and data interfaces, for Windows and Linux

Pulse signals

Digital inputs for pulse processors with single electron counting


To the cutting edge

Use standard imaging software or develop own code


Image acquisition software

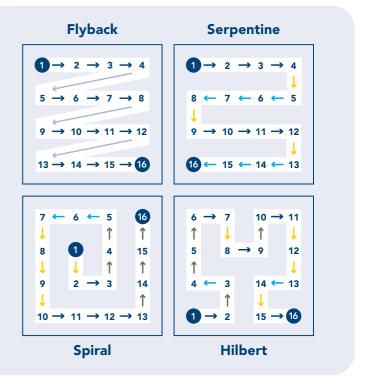
- Configure and run conventional image scans
- Acquire simultaneous images
- Save images to standard TIF format
- Embed metadata in XMP format

Advanced scan patterns

- Prepare a list of coordinates and times
- Upload to the scan controller
- Run and download digitized values
- Make an image, display and repeat

Image processing software

- View images with calibrated scale and intensity
- Annotate and publish to resolution and size
- Measure geometry and pixel values
- Add pseudo-color and mix in colour


Software Development toolKit

- Control library that encapsulates hardware details

- Documentation of available functions and parameters

- Sample code for new beginners

- Binaries for Windows and Linux

Options and peripherals

- Add more video signals with MICS amplifier - Enable beam testing with Lock-In Amplification - Count single electron pulses with TurboTEM 'PULSE' - Quantify STEM signals with Opal detector

TEM scan controller (DISS6)

Standard inputs	2x4 calibrated analog inputs (A1A4, B1B4)
	12× digital inputs (D1D12)
	3× trigger inputs (Pixel, Line and Frame)
	Pause/resume input
Standard outputs	2× calibrated analog scan outputs (X, Y)
	2× calibrated analog magnification outputs (X, Y) (optional)
	2× external control outputs (Blank and Scan)
	4× clock outputs (Pixel, Line, Frame and Blank)
Control interfaces	USB2
	ETH
Scan modes	Sawtooth scan mode
	Pixel map mode
	Chopped scan mode
	Subpixel scan mode
Scan generator	16-bit ±3.5±12V analog X, Y scans (unbalanced)
	16-bit, +-2.2V7.5 (+-0.65 2.2V) analog X, Y scans (balanced
	16-bit 3.512V analog X, Y magnifications
	10-bit ±1.8V analog X, Y shifts
	Gnd., 5V, 15V external bank/scan
	TTL pause/resume
	TTL clock and synchronization
	0.5 GPixels maximum frame size (software limit)
	10 ns10 s pixel dwell time (selection dependent)
	0256× frame average
	050× line average
	Mains frequency synchronization
Signal digitization	12-bit for analog A1A4, B1B4
	16-bit for TTL D1D12
	32-bit for TTL D1D6 (optional)
Electron counting (optional)	2× counter inputs (ECL1ECL2)
	2× threshold level outputs
	1 GHz bandwidth
Lock-in amplifier (optional)	1× calibrated analog input (LIA)
	TTL reference frequency output
	20-bit digitization
	1 μs10 seconds pixel dwell time
MICS amplifier (optional)	16× calibrated inputs (M1M16) maximum
	-11 V input offset M1M16
	1× 1,800× gain M1M16
	-11 V output offsets M1M16
	3.4 MHz34 Hz low-pass filter

	4× averages M1M4, M5M8, M9M12, M13M16
	Automated 4Q global brightness and contrast
	Automated input offsets (dark correction)
	Automated gain normalization (bright correction)
	Automated low-pass filter (matching pixel dwell time)
Touch display	Scan status overview
	Installed options list
	Scan detailed information
	ETH connections settings
	DVI output settings
Housing	19-inch rack-mountable

PC/Laptop, display (optional)		
PC/Laptop	Intel Core i3 minimum	
	1× USB 2.0 minimum, Windows 117	
	network is recommended for remote support	
Display	1,280 × 1,024 resolution minimum	

Parts and cables

TEM scan controller (DISS6) unit	standard 1×
Imaging cable, Power cable, USB cable	standard 1×
USB flash drive	standard 1×
PC, keyboard, mouse	optional 1×
Displays	optional 1×

Software packages

Drivers	PE USB
Libraries	DISS6Control
Software	DISS6 app, DIPS

Weight and dimensions

TEM scan controller	typ. 23.5 × 8.7 × 29.5 cm, typ. 4 kg
Shipping	typ. 36 × 32 × 60 cm, typ. 5 kg

Site requirements		
	Power	1× mains 105/240 VAC single phase 50/60 Hz
		on the same earth as the microscope
	Connections	1× external scan interface at TEM
		1× video signals outputs at TEM
	Space	TEM scan controller should be placed in a TEM rack

S6 app, EMGateway server

Our design principles

We look back on 30 years of experience in development and manufacture of high-performance instruments and technologies for microscopy.

We are driven by an ambition to expand abilities and to improve <u>performance of</u> electron microscopes.

Our aspiration is to make the best quality tools and to join our customers on their journeys of scientific exploration and discovery.

Performance

Microscopy must be a reliable and enjoyable experience

- Design for highest speed and resolution at the lowest noise
- Develop smart independent controllers for live optimization
- Support new users with simple and automated controls
- Assist advanced users with access to all parameters

Efficiency

Microscopes must provide an uninterrupted focus

- Use standard microscope controls and data formats
- Give instant feedback with live image mixing and processing
- Add bespoke software tools and algorithms for repetitive tasks
- Enable more developers with libraries and documentation

Environment

Products and technologies must be sustainable

- Reduce power consumption through smart design
- Minimize material use, embrace reuse where possible
- Save weight and volume for shipping and maintenance
- Enable everyone to develop sustainable innovations

Quantification

Data and control must be in physical units

- Calibrate, in production, for measured inputs and outputs
- Provide samples, procedures, and software for calibration
- Give all control parameters in device independent values
- Ensure safe operation according to IEC61010-1 and IEC 61326-1

point electronic GmbH Erich-Neuß-Weg 15 | 06120 Halle (Saale) | Germany Tel.: +49 345 1201190 | info@pointelectronic.de www.pointelectronic.de

