

## Developments in scan strategies for high-speed and low-dose microscopy

Jonathan J. P. Peters<sup>1,2</sup>, Grigore Moldovan<sup>3</sup>, Tiarnan Mullarkey<sup>1,4</sup>, Lewys Jones<sup>1,2,4</sup>

<sup>1</sup> Advanced Microscopy Laboratory, CRANN, Trinity College Dublin, Ireland <sup>2</sup> School of Physics, Trinity College Dublin, Ireland <sup>3</sup> point electronic GmbH, Halle (Saale), Germany <sup>4</sup> Centre for Doctoral Training in the Advanced Characterisation of Materials, AMBER Centre, Trinity College Dublin, Ireland

🔀 jonathan.peters@tcd.ie

@TCD Ultramic

## Introduction

- Scanning transmission electron microscopy (STEM) is a widespread and useful technique in the materials scientist's toolbox. However serial imaging is slow,
- exacerbated by imperfect scan coils require additional wait times, increasing the sample's exposure to the electron beam. • Several strategies have been proposed to improve acquisition times (e.g. compressed sensing, novel scan paths [1]), though these do not remove effects from the scan coils, becoming particularly evident at lower dwell times.
- We explore a range of scan strategies to increase imaging times, increase scan efficiency, and reduce beam damage, whilst maintaining crystallographic precision.

